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Abstract. This report is concerned with the optimization of

trajectories for coplanar, aeroassisted orbital transfer (AOT) from

a high Earth orbit (HEO) to a low Earth orbit (LEO). In particular,

HEO can be a geosynchronous Earth orbit (GEO). It is assumed that

the initial and final orbits are circular, that the gravitational

field is central and is governed by the inverse square law, and

that two impulses are employed, one at HEO exit and one at LEO

entry. During the atmospheric pass, the trajectory is controlled

via the lift coefficient in such a way that the total characteristic

velocity is minimized.

First, an ideal optimal trajectory is determined analytically for

lift coefficient unbounded. This trajectory is called grazing

trajectory, because the atmospheric pass is made by flying at

constant altitude along the edge of the atmosphere until the excess

velocity is depleted. For the grazing trajectory, the lift

coefficient varies in such a way that the lift, the centrifugal

force due to the Earth's curvature, the weight, and the Coriolis

force due to the Earth's rotation are in static balance. Also, the

grazing trajectory minimizes the total characteristic velocity and

simultaneously nearly minimizes the peak values of the altitude

drop, the dynamic pressure, and the heating rate.

Next, starting from the grazing trajectory results, a real

optimal trajectory is determined numerically for lift coefficient

bounded from both below and above. This trajectory is characterized

by atmospheric penetration with the smallest possible entry angle,

followed by flight at the lift coefficient lower bound.
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Consistently with the grazing trajectory behavior, the real optimal

trajectory minimizes the total characteristic velocity and

simultaneously nearly minimizes the peak values of the altitude

drop, the dynamic pressure, and the heating rate.

Key Words. Flight mechanics, astrodynamics, aeroassisted

orbital transfer, optimal trajectories, nonlinear two-point

boundary-value problems, sequential gradient-restoration

algorithm.
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Notations

C D = drag coefficient;

C L = lift coefficient;

D = drag, N;

DP = dynamic pressure, N/m2;

E = lift-to-drag ratio modulus;

g = local acceleration of gravity, m/sec2;

ga = acceleration of gravity at h = h a , m/sec2;

h = altitude, m;

h a = thickness of the atmosphere, m;

HR = heating rate, W/m2;

L = lift, N;

m = mass, kg;

r = radial distance from the center of the Earth, m;

r e = radius of the Earth, m;

r a = radius of the outer edge of the atmosphere, m;

S = reference surface area, m2;

t = T/T = dimensionless time;

T = running time, sec;

V = velocity, m/sec;

V a = circular velocity at r = r a, m/sec;

V, = reference velocity, m/sec;

= angle of attack, rad;

¥ = path inclination, rad;

H = Earth's gravitational constant, m3/sec2;

p = air density, kg/m3;

Pa = air density at h = h a , kg/m3;

p, = reference air density, kg/m3;
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m

= final time, sec;

= Earth's angular velocity, rad/sec;

AV = characteristic velocity, m/sec.

Subscripts

0 = entry into the atmosphere;

1 = exit from the atmosphere;

00 = exit from the initial orbit;

ii = entry into the final orbit.

Superscripts

• = derivative with respect to dimensionless time;

- = variable computed in an inertial system.

Acronyms

AOT = aeroassisted orbital transfer;

GEO = geosynchronous Earth orbit;

HEO = high Earth orbit;

LEO = low Earth orbit;

SGRA = sequential gradient-restoration algorithm;

TPBVP = two-point boundary-value problem.
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1. Introduction

Saving propellant weight and increasing the payload are

among the most important problems of space transportation.

Orbital transfer from a high Earth orbit (HEO) to a low Earth

orbit (LEO) can be made more economic if the aeroassisted orbital

transfer (AOT) mode is employed. In particular, HEO can be a

geosynchronous Earth orbit (GEO).

In the AOT mode, use is made of the aerodynamic forces in

order to achieve the proper amount of velocity depletion during

the atmospheric pass. Here, the intent is to achieve a specified

apogee following the atmospheric exit, while minimizing the

overall propellant consumption and keeping the peak heating rate

within reasonable bounds during the atmospheric pass.

Aeroassisted orbital transfer is not only important for

HEO-to-LEO transfer maneuvers, but may prove to be indispensable

to future planetary flights. In particular, this statement

refers to lunar return vehicles, Mars exploration vehicles, and

Mars return vehicles (Refs. 1-3). Indeed it is known that, for a

round-trip Earth-to-Mars mission, the total characteristic

velocity of the AOT mode is about half that of the all-propulsive

mode.

While the AOT prospects are clearly bright, to take proper

advantage of them it is necessary that guidance and control

systems be designed with care. In turn, it is imperative that

optimal trajectories be studied (Refs. 4-8), since they supply
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the ideal benchmark that guidance trajectories should strive to

approach (Refs. 9-14).

In this report, GEO-to-LEO optimal trajectories are studied

with the understanding that the atmospheric pass is made with the

engine shut off and is controlled via the lift coefficient so as

to deplete excess velocity. The entry and exit values of the path

inclination are free, and the criterion of optimization is the

total characteristic velocity, which is being minimized.

With the above ideas in mind, this paper is organized as

follows. Section 2 presents the system description. In Section 3,

several optimization problems are formulated; in Section 4, the

data used in the numerical experiments on optimal trajectories are

presented.

In Sections 5-6, an ideal optimal trajectory is determined

analytically for lift coefficient unbounded. This trajectory is

called grazing trajectory, because the atmospheric pass is made

by flying at constant altitude along the edge of the atmosphere

until the excess velocity is depleted. For the grazing

trajectory, the lift coefficient varies in such a way that the

lift, the centrifugal force due to the Earth's curvature, the

weight, and the Coriolis force due to the Earth's rotation are in

static balance. Also, the grazing trajectory minimizes the total

characteristic velocity and simultaneously nearly minimizes the

peak values of the altitude drop, the dynamic pressure, and the

heating rate.
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In Sections 7-8, starting from the grazing trajectory

results, a real optimal trajectory is determined numerically for

lift coefficient bounded from both below and above. This

trajectory is characterized by atmospheric penetration with the

smallest possible entry angle, followed by flight at the lift

coefficient lower bound. Consistently with the grazing trajectory

behavior, the real optimal trajectory minimizes the total

characteristic velocity and simultaneously nearly minimizes the

peak values of the altitude drop, the dynamic pressure, and the

heating rate. Finally, the conclusions are given in

Section 9.

These results have important implications for the design of

guidance and control systems. Indeed, it appears possible to

develop a nominal trajectory having a nearly-constant lift

coefficient and performance close to that of the optimal

trajectory; this concept is of particular interest for low

lift-to-drag ratio spacecraft with a narrow lift range (Refs.ll-12).

Also, it appears that the properties of minimum characteristic

velocity, minimum peak altitude drop, minimum peak dynamic

pressure, and minimum peak heating rate are achieved via the same

control distribution. Hence, one surmises that AOT guidance and

control systems can be designed by concentrating on the peak

altitude drop, because all the other performance indexes are

directly connected with this quantity.
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2. System Description

We consider coplanar, aeroassisted orbital transfer from a

high Earth orbit (HEO) to a low Earth orbit (LEO). In particular,

HEO can be a geosynchronous Earth orbit (GEO). We employ the

following assumptions: (i) the initial and final orbits are

circular and equatorial; (ii) two impulses are employed, one at

the exit from the initial orbit and one at the entry into the

final orbit; (iii) the gravitational field is central and is

governed by the inverse square law. The four key points of the

maneuver are these: point 00, exit from the initial orbit; point

0, entry into the atmosphere; point I, exit from the atmosphere;

and point ii, entry into the final orbit. See Fig. I.

The maneuver starts at point 00 in high Earth orbit with a

tangential propulsive burn having characteristic velocity AV00;

here, the spacecraft enters an elliptical transfer orbit,

connecting the points 00 and 0; this elliptical transfer orbit

is such that its apogee occurs at r00. At point 0, the spacecraft

enters the atmosphere; after traversing the upper layers

of the atmosphere, it exits the atmosphere at point i; during

the atmospheric pass, the velocity of the spacecraft is depleted,

due to the aerodynamic drag. At point I, the spacecraft enters

an elliptical transfer orbit connecting the points 1 and ii; this

elliptical transfer orbit is such that its apogee occurs at rll.

The maneuver ends at point ii with a tangential propulsive burn

having characteristic velocity AVII; here, the spacecraft

enters the low Earth orbit, in that the magnitude of AVII

is such that the desired circularization into LEO is achieved.
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For the atmospheric portion (h < h ) of the trajectory of
-- a

the AOT spacecraft, we employ an Earth-fixed system; for the

space portion of the trajectory (h > ha), we employ an inertial

system. For h ! ha, we compute the air density using the US

Standard Atmosphere, 1976 (Ref. 15); for h > ha, we assume that

the air density is zero.

2.1. Atmospheric Pass. Because the initial and final

orbits are equatorial, the atmospheric portion of the trajectory

of the AOT vehicle is also equatorial if the bank angle is zero.

We employ the following hypotheses: (i) the atmospheric pass is

made by flying eastward; (ii) the engine is shut off; hence, the

AOT vehicle behaves as a particle of constant mass; (iii) Coriolis

acceleration terms generated by the Earth's rotation are considered,

while transport acceleration terms are neglected; (iv) the

spacecraft is controlled via the lift coefficient; (v) under extreme

hypersonic conditions, the dependence of the aerodynamic coefficients

on the Mach number and the Reynolds number is disregarded.

2.2. Differential System. With the above assumptions, and

upon normalizing the flight time to unity, the equations of motion

in an Earth-fixed system are given by

h = T[Vsiny], (la)

V = T [-D/m - gsin¥] , (ib)

y = T [L/mV + (V/r - g/V)cosy + 2m], (Ic)

with 0 < t < i. In the above equations,



6 AAR249

r = r e + h, g _/r 2 u/(r e + h) 2= = , (2)

where _ denotes the Earth's gravitational constant. In addition,

the aerodynamic forces are given by

D = (I/2)CDPSV2 , L = (I/2)CLPSV2 , (3a)

with p = p(h). In particular, if a quadratic polar is postulated,

the relation between the drag coefficient and the lift coefficient

is given by

2

C D = K 0 + KIC L + K2C L (3b)

2.3. Control Constraint. To obtain realistic solutions,

the presence of upper and lower bounds on the lift coefficient

is necessary. Therefore, the two-sided inequality constraint

CLL _ C L _ CLU' 0 < t < i, (4)

must be satisfied everywhere along the interval of integration.

2.4. Transformation Relations. The following equations

allow one to pass from quantities computed in an Earth-

fixed system to quantities computed in an inertial system, and

viceversa:

h=h,

Vcosy = Vcosy + er,

Vsiny = Vsiny.

(5a)

(5b)

(5c)
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While the above equations are nonlinear, they can be solved

explicitly to yield inertial quantities in terms of Earth-fixed

quantities, and viceversa.One obtains the direct relations

h = h, (6a)

~ V 2 2 2 (6b)V = /_ + 2_rVcosy + _ r ),

y = arctan[Vsiny/(Vcosy + _r)], (6c)

and the inverse relations

h= h,

V = /_2 _ 2_rVcosy + _2r2),

(7a)

(7b)

y = arctan[Vsiny/(Vcosy - 0_r)]. (7c)

2.5. Boundary Conditions. At the entry into the atmosphere

(t = 0) and at the exit from the atmosphere (t = i), certain

static and dynamic boundary conditions must be satisfied. Specifically,

at atmospheric entry, we have

h 0 = ha, (Sa)

2(2V,2 ~r00 - V02 ) 2 2_02 2 ~- 2r00raV, + r a cos Y0 = 0, (8b)

where h a is the thickness of the atmosphere and V, = Va = /_/r a) =

7.832 km/sec is a reference velocity, i.e., the circular velocity

at r = r a. In addition, at atmospheric exit, we have

hl = h a '

2 2
rll (2V,2 - V1 2rllraV,2 ra 2 2 2 ~) - + V1 cos Y1 = 0.

(9a)

(9b)
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2.6. Summary. The relations governing the atmospheric pass

include the differential system (1)-(3), the control constraint

(4), and the boundary conditions (8)-(9), in which the inertial

quantities are related to the Earth-fixed quantities via the

transformation relations (6). In this formulation, the independent

variable is the time t, 0 < t < i. The dependent variables include
u

the state variables h(t), V(t), y(t), the control variable CL(t),

and the parameter T.

_..mT
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3. Optimal Control Problems

Subject to the previous constraints, different optimization

problems can be formulated, depending on the performance index

chosen. The resulting optimal control problems are either of the

Bolza type or the Chebyshev type.

Problem (PI). Minimum Energy. It is required to minimize the

energy necessary for orbital transfer. A measure of this energy

is the total characteristic velocity AV, the sum of the initial

characteristic velocity AV00, associated with the propulsive burn

from HEO, and the final characteristic velocity AVII, associated

with the propulsive burn into LEO. Clearly,

= AO ::A$00+ A$II, (10a)

with

AV00 = /(ra/r00)V * - (ra/r00)V0cosY0, (10b)

AVII = /(ra/rll)V * - (ra/rll)VlCOSYl. (10c)

L

Here, the inertial quantities are related to the Earth-fixed

quantities via the transformation relations (6).

Problem (P2). Minimum Peak Altitude Drop. It is required to

minimize the peak value of the altitude drop. The performance index

is given by

I2 =max(h a - h), 0 _< t _< i. (ii)
t

Here, h = 120 km denotes the altitude corresponding to the outer
a

edge of the atmosphere.
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problem (P3). Minimum Peak Dynamic Pressure. It is required

to minimize the peak value of the dynamic pressure. The performance

index is given by

I3 = max(DP),

t

DP = (I/2)pV 2.

0 < t < i, (12a)

(12b)

Problem (P4). Minimum Peak Heating Rate. It is required to

minimize the peak value of the heating rate. The performance index

is given by

I4 =max(HR), 0 < t < i, (13a)

t

HR = C/]p/p,)(V/V,)
3.07

(13b)

Here, p, = 0.3097E-03 kg/m 3 is a reference density (density at

the reference altitude h, = ha/2 = 60 km), V, = Va = 7.832 km/sec

is a reference velocity, and the constant C = 282.3 W/cm 2 represents

the stagnation point heating rate at p = p, and V = V,, based on

a nose radius of one foot.

L



ll AAR-249

L

4. Experimental Data

The following data are used in the numerical experiments on

optimal trajectories.

Physical Constants. The physical constants used in the

computations are as follows: the radius of the Earth is r e 6378 km;

the radius of the outer edge of the atmosphere is r = 6498 km;
a

the thickness of the atmosphere is h = 120 km; the Earth's
a

gravitational constant is _ = 0.3986E+06 km3/sec2;the Earth's

angular velocity is _ = 0.7292E-04 rad/sec.

Atmospheric Model. The atmospheric model used is the US

Standard Atmosphere, 1976 (Ref. 15). In this model, the values of

the density are tabulated at discrete altitudes. For intermediate

altitudes, the density is computed by assuming an exponential

fit for the function p(h).

Transfer Maneuver. A GEO-to-LEO transfer maneuver is considered.

The GEO radius is r00 = 42164 km, corresponding to r00/r a = 6.4888.

The LEO radius is rll = 6708 km, corresponding to rll/r a = 1.0323.

Spacecraft SI. See Refs. 13-14. The mass per unit reference

surface area is m/S = 300 kg/m 2. The drag polar CD(C L) is shown

in Fig. 2A and is represented by Eq. (3b), with K 0 = 0.i0,

K 1 = 0.00, K 2 = i.ii. The lift coefficient is subject to Ineq. (4),

with CLL = -0.90 and CLU = +0.90. The maximum lift-to-drag ratio

modulus is Ema x= 1.50 and occurs for C L = 0.30.

In the numerical experiments, the possibility of a smaller

lift range is considered via three alternative values for the

lift coefficient lower bound:
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(i) CLL = -0.90, (ii) CLL = -0.70, (iii) CLL = -0.50. (14)

For these cases, the maximum lift-to-drag ratio modulus is E max

and occurs for C L = 0.30.

Spacecraft $2. See Ref. ii. The mass per unit reference

surface area is m/S = 117.3 kg/m 2. The drag polar CD(C L) is shown

in Fig. 2B and is represented by Eq. (3b), with K 0 = 1.235,

K 1 = -2.379, K 2 = -5.473. The lift coefficient is subject to

Ineq. (4), with CLL = -0.47 and CLU = -0.21. The maximum lift-to-

drag ratio modulus is Ema x = 0.42 and occurs for C L = -0.47.

In the numerical experiments, the possibility of a smaller

lift range is considered via three alternative values for the

lift coefficient lower bound:

= 1.50

(i) CLL =-0.47, (ii) CLL =-0.38, (iii) CLL =-0.27. (15)

For these cases, the values of the maximum lift-to-drag ratio

modulus are

(i) Ema x = 0.42, (ii) Ema x = 0.28, (iii)
E = 0.18 (16)
max

and occur for C L = CLL.

It must be noted that, for Spacecraft $2, the lift coefficient

C L = -0.47 corresponds to the angle of attack _ = 27 deg;

C L = -0.38 corresponds to e = 17 deg; C L = -0.27 corresponds

to e = i0 deg; and C L = -0.21 corresponds to _ = 7 deg (see Ref. ii).
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5. Ideal Optimal Trajectory, Lift Coefficient Unbounded

An ideal optimal trajectory can be determined analytically

if one minimizes the total characteristic velocity (i0), subject

to all of the constraints of Section 2, except the control constraint

(4). This can be done via the four-step procedure described below.

Step i. Ignore not only the control constraint (4), but

also the differential equations (I) and the static boundary

conditions (8a) and (9a). Then, consider the problem of minimizing

the total characteristic velocity (i0) with respect to the terminal

state components V 0, Y0' Vl' Y1 which satisfy the dynamic boundary

conditions (8b) and (9b). Clearly, this is a mathematical programming

problem in which the initial state components V 0, Y0 and the

Vl ~final state components ' Y1 appear separately in both the

objective function and the constraining relations. Therefore, the

solution can be obtained by solving two separate mathematical

programming problems: (i) the minimization of the HEO characteristic

velocity (10b) with respect to the initial state components ' Y0

which satisfy the constraint (Sb); and (ii) the minimization of

the LEO characteristic velocity (10c) with respect to the final

state components V I, Y1 which satisfy the constraint (9b). This

yields the inertial solutions

V0 = V*/[2r00/(r00 + ra)]'

V1 = V*/[2rll/(rll + ra)]'

(17a)

(17b)

and
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Y0 = 0,

Y1 = O.

(18a)

(18b)

In turn, because of the inverse transformation relations (7), the

inertial solutions (17)-(18) imply the fixed-Earth solutions

V0 = V,/[2r00/(r00 + ra)] - _ra, (19a)

V1 = V,/[2rll/(rll + ra)] - _r a, (19b)

and

Y0 = 0, (20a)

Y1 = 0. (20b)

Step 2. Because of the result (20), it is natural to postulate

the following altitude/path inclination solutions

h(t) = ha, 0 _< t _< i, (21a)

y(t) = 0, 0 < t < i, (21b)

which are clearly consistent with the differential equation (la)

plus the static boundary conditions (8a) and (9a).

Step 3. After observing that, because of (21b),

y(t) = 0, 0 < t < I, (22)

we see that the differential equation (ic) reduces to

L = -m(V2/ra - ga ) - m(2_V) , (23)
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which yields the required lift coefficient

CL = -C I[I - (V,/V)2] _ C2(V,/V) , (24a)

where the dimensionless constants C l, C 2 are given by

C 1 = 2m/PaSra, C 2 = 4m_/PaSV ,.

In particular, the entry and exit values of the required lift

coefficient are given by the relations

(24b)

2

CL0 = -C 1 [i - (V,/V 0) ] - C 2 (V,/V 0) ,

2

CLI = -C I[I - (V,/V I) ] - C 2(v,/v I) ,

(25a)

(25b)

which must be employed in conjunction with Eqs. (19).

Step 4. It remains to verify whether the differential equation

(ib) can be satisfied. Simple manipulations, omitted for the

sake of brevity, show that this is precisely the case if the

velocity-dimensionless time relation V(t) is determined through

the inverse relation t(V) represented by

IV0 /CDV2t = (C3/T) (V, )dV.
V

Here, the dimensional constant C 3 (sec) and the flight time T (sec)

are given by

C 3 = 2m/PaSV,,

iVoT = C 3 (V,/CDV2)dV,

V 1

and the drag coefficient C D is given by Eq.

conjunction with Eqs. (24).

(3b) employed in

(26a)

(26b)

(26c)
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6. Properties of the Ideal Optimal Trajectory

The ideal optimal trajectory determined for lift coefficient

unbounded is governed by Eqs. (17)-(26) and satisfies all of the

constraints of Section 2 except the control inequality constraint

(4). This trajectory is called grazing trajectory because the

atmospheric pass is made by flying at constant altitude along the

edge of the atmosphere. Thus, the complete transfer maneuver

includes: (i) a descending flight branch connecting an apogee

located at GEO to a perigee located on the atmospheric edge;

(ii) a level flight branch flown along the atmospheric edge; and

(iii) an ascending flight branch connecting a perigee located

on the atmospheric edge to an apogee located at LEO.

6.1. Characteristic Velocity. By combining Eqs. (i0) and

(17)-(18), we see that the characteristic velocity of the grazing

trajectory is given by

Ii = AV = AV00 + AVii,

AVo0 = V,V_ra/ro0) - V,(ra/roo)/[2roo/(ro0 + r a)] .

AVii = V,/(ra/rll) - V,(ra/ril)/[2ril/(rii + ra)].

(27a)

(27b)

(27c)

For comparison purposes, consider the Hohmann transfer maneuver,

which is flown totally in space by navigating in the region bounded

by r = r00 and r = rll. For this trajectory, the characteristic

velocity is given by

Ii = AV = AV00 + AVII, (28a)

AV00 = V,/(ra/r00) - V,/_ra/r00)/_2rll/(r00 + rll)],
(28b)
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AVII =-V,_ra/rll) + V,/_ra/rl!)_2r00/(r00 + rll)] • (28c)

Table 1 compares the grazing solution (first line) and the

Hohmann transfer solution (third line) and shows that the total

characteristic velocity of the grazing solution is less than 40%

of that of the Hohmann transfer solution. This illustrates the

savings in propellant mass which are possible by employing

aeroassisted orbital transfer techniques instead of Hohmann transfer

techniques.

6.2. Peak Altitude Drop. For the grazing trajectory, the

functional (ii) takes the value

I2 = max(h a - h) = 0. (29)
t

Therefore, the grazing trajectory simultaneously minimizes the

peak value of the altitude drop.

6.3. Peak Dynamic Pressure. For the grazing trajectory, the

functional (12) takes the value

I3 = max(DP) = (i/2)@aV02, ,
t

meaning that the peak dynamic pressure occurs at atmospheric

entry (t = 0). Note that the performance index (12) is dominated

by the density rather than the velocity in the following sense:

during the atmospheric penetration, the density variations are

much larger than the velocity variations. Hence, it is felt

plausible that the grazing trajectory nearly minimizes

the functional (12).

6.4. Peak Heating Rate. For the grazing trajectory, the

functional (13) takes the value

(30)
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3.07 C31)
I4 = max(HR) = C/(pa/p,)(V0/V,)

t

meaning that the peak heating rate occurs at atmospheric entry

(t = 0). Once more, because the performance index (13) is

dominated by the density rather than the velocity, it is felt

plausible that the grazing trajectory nearly minimizes the

functional (13).

6.5. Implications. Associated with the grazing trajectory

(C L unbounded) are the following engineering implications for

a real optimal trajectory (C L bounded).

(i) The characteristic velocity of the grazing trajectory

(27) constitutes a lower bound for the characteristic velocity of

a real optimal trajectory. Therefore, it constitutes a benchmark

that one should strive to approach with a real optimal trajectory.

(ii) Because the grazing trajectory simultaneously minimizes

or nearly minimizes the performance indexes (II) through (I4),

one surmises that the same general behavior might hold for a

real optimal trajectory.

(iii) Along a grazing trajectory, the lift, the centrifugal

force due to the Earth's curvature, the weight, and the Coriolis

force due to the Earth's rotation are in static equilibrium.

(iv) For a grazing trajectory, the velocity decreases

monotonically between the entry value (19a) and the exit value

(19b), and the required lift coefficient increases monotonically

between the entry value (25a) and the exit value (25b). For the
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two spacecraft under consideration, the terminal values of C L

are given by

(Sl) CL0 = -1921.3, CLI = -56.6, (32a)

(S2) CL0 = -750.6, CLI = -22.1, (32b)

with the following meaning: not only is the required lift

coefficient negative everywhere, but it undershoots by a

considerable amount the lower bound CLL. This means that the

grazing trajectory is only an ideal trajectory, hence not flyable.

(v) To sum up,while the grazing trajectory was computed neglecting

the two-sided inequality constraint (4), the nature of the grazing

solution is such that the upper bound inequality C L _ CLU is

satisfied everywhere, while the lower bound inequality C L _ CLL

is violated everywhere. Even though the grazing trajectory is

not flyable, this suggests the idea that, for a real optimal

trajectory, the control distribution might be of the form C L = CLL.

This idea is explored in the following section.
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7. Real Optimal Trajectory,Lift Coefficient Bounded

A real optimal trajectory can be determined numerically by

accounting for all of the constraints of Section 2, including

the control constraint (4). Two alternative procedures are now

presented.

7.1. Solution via TPBVP. The grazing trajectory of Sections 5-6

satisfies all of the constraints of Section 2, except the two-sided

inequality constraint (4). Specifically, the lower bound inequality

C L _ CLL is violated everywhere. This suggests the idea that the

control distribution of the real optimal trajectory might be of

the form C L = CLL.

If the hypothesis C L = CLL is made, the resulting trajectory

is described by the differential system

= T [Vsiny] , (33a)

V = T[-D(h,V,CLL)/m - gsiny],

y = T[ L(h,V,CLL)/mV + (V/r - g/V)cosy + 2_],

(33b)

(33c)

T = 0, (33d)

which must be solved in conjunction with the initial conditions

h 0 = h a ,

(2r_0 - 2r00ra)V, 2 -

(34a)

2 + 2r2.
r00(V02 + 2_raV0Cosy 0 _ a )

2(V0cos _ + _ra) 2 = 0 (34b)+ ra 0 '

and the final conditions



21 AAR-249

h = h (35a)
1 a'

_ 2rllra)V, 2 2 _ 2 2)(2r_l - rll(V + 2_raVlCOSYl + _ r a

+ r2(VlC°SYla + _ra)2 = 0. (35b)

The following comments are pertinent:

(i) the system (33) is a formal modification of the system

(i) after accounting for the hypothesis CL = CLL and the fact

that, since T is a parameter, it can be represented via the

differential equation T = 0; this is done only for explanation purposes;

(ii) the boundary conditions (34b) and (35b) are a formal

modification of the boundary conditions (Sb) and (9b) after accounting

for the transformation relations (5)-(6);

(iii) the problem represented by Eqs. (33)-(35) is a two-

point boundary-value problem (TPBVP) in which the unknowns are

the functions h(t), V(t), y(t), T(t); since there are four differential

equations and four boundary conditions, one surmises that a

solution might exist; however, because the TPBVP (33)-(35) is

nonlinear, the existence of a solution must be confirmed by numerical

tests.

7.2. Solution via SGRA. An alternative to solving the previous

TPBVP is to employ the sequential gradient-restoration algorithm

(SGRA, Refs. 16-18) in order to minimize the functional (i0) with

respect to the state variables h(t), V(t), y(t), the control

variable CL(t), and the parameter T which satisfy the differential

system (1)-(3), the control constraint (4), and the boundary

conditions (8)-(9) rewritten in the form (34)-(35) after replacement
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of inertial quantities with Earth-fixed quantities. Note that

SGRA is an iterative algorithm which produces a sequence of

feasible solutions, each characterized by a lower value of the

functional (i0). While SGRA is available in both primal form

and dual form (Refs. 17-18), the primal form is more suitable

to the solution of hypervelocity flight problems. Hence, it is

employed here.

7.3. Numerical Results. In computing numerical solutions

via SGRA, the experimental data of Section 4 were employed. Hence,

a GEO-to-LEO optimal aeroassisted orbital transfer was determined

for both Spacecraft S1 (see Refs. 13-14) and Spacecraft $2 (see

Ref. ii). For each spacecraft, three different values were considered

for the lift coefficient lower bound, specifically, the values

(14) for Spacecraft Sl and the values (15) for Spacecraft $2.

The numerical results are shown in Tables 1-2 and Figs. 3-4.

Table 1 compares the characteristic velocity of the real

optimal trajectory (second line) with that of the grazing trajectory

(first line) and the Hohmann transfer trajectory (third line).

Clearly, the characteristic velocity of the real optimal trajectory

is within 1% of that of the grazing trajectory and is considerably

below (by almost 60%) that of the Hohmann transfer trajectory.

Table 2 presents summary results for the real optimal trajectory

of Spacecraft S1 and Spacecraft $2. In Table 2, the following

quantities are shown: the entry values of the state variables; the

exit values of the state variables; the minimum altitude, the

peak dynamic pressure, the peak heating rate, and the flight time;
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the components of the characteristic velocity and the total

characteristic velocity. As CLL increases (namely, as the lift

coefficient range CLU - CLL decreases), the real optimal trajectory

is characterized by a steeper entry, lower minimum altitude, higher

peak dynamic pressure, and higher peak heating rate. However,

the total characteristic velocity and its components are almost

independent of CLL, hence almost independent of the lift

coefficient range.

Figures 3-4 refer to the real optimal trajectories of Spacecraft

S1 and Spacecraft $2. The following quantities are shown as

functions of the dimensional time T: the altitude h; the velocity

V; the path inclination y; the lift coefficient CL; and the density

p. The results confirm the idea that, for the real optimal trajectory,

the lift coefficient is constant and equal to the lower bound.

As CLL increases (namely, as the lift coefficient range CLU - CLL

decreases), the real optimal trajectory changes; in particular, the

minimum altitude changes. However, while the changes in minimum

altitude are relatively small, they translate into larger density

changes, and hence larger changes in max(DP) and max(HR).
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8. Properties of the Real Optimal Trajectory

The real optimal trajectory determined for lift coefficient

bounded satisfies all of the constraints of Section 2, including

the control inequality constraint (4). This trajectory is called

nearly-grazing trajectory, because the atmospheric pass is

characterized by atmospheric penetration with the smallest possible

entry angle, followed by flight at the lift coefficient lower

bound. Thus, the complete transfer maneuver includes: (i) a

descending flight branch connecting an apogee located at GEO to

the atmospheric entry point; (ii) an atmospheric flight branch

including a shallow descent followed by a shallower ascent; and

(iii) an ascending flight branch connecting the atmospheric exit

point to an apogee located at LEO.

8.1. Characteristic Velocity. If we combine Eqs. (8)-(10)

and eliminate the terminal velocities, we see that the characteristic

velocity components of the nearly-grazing trajectory can be expressed

in terms of the terminal path inclinations as follows:

- ra) cos2y0 /AV00 = V,/qra/r00) - V,(ra/r00) /_2r00(r00

2 2 2 ~

(r00 - raCOS y0)] , (36a)

- ra)C°S2yl /AVII = V,_ra/rll) - V,(ra/rll)/_2rll(rll

2 2 2 ~

(rll - raCOS yl)]. (36b)

By comparison, we observe that, for the grazing trajectory

(i0= --o),
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AV00 G = V,/_ra/r00)

AVII G = V,/_ra/rll)

- V,(ra/r00) /_2r00/(r00 + ra)] ,

- V,(ra/rll) /_2rll/(rll + r a) ] .

(37a)

(37b)

Let the right-hand sides of (36) be expanded in a Taylor series,

and let the following approximations be employed:

YO _ YO'

Y1 Yl"

(38a)

(38b)

Then, the following relations can be established between (36) and

(37):

2 (39a)
AV00 = AV00 s + A0Y 0 ,

2 (39b)
AVll = AVll G + AIY I ,

with

A 0 = (V,//2)[ra/(r00 - ra)] [r00/(r00 + ra)]3/2, (40a)

A I = (V,//2) [ra/(rll - ra)] [rll/(rll + r a) ]3/2. (40b)

For the GEO-to-LEO transfer of Section 4, the constants A 0, A 1

take the values

A 0 = 0.8138 km/sec,

A 1 = 62.03 km/sec.

(41a)

(41b)

Equations (39) show that the characteristic velocity components of

a nearly-grazing trajectory can be contained by making the entry

and exit path inclinations as small as possible. For tangential entry
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and exit (Y0 = Y1 = 0), the characteristic velocity components

of the nearly-grazing trajectory reduce to those of the grazing

trajectory. For nontangential entry and exit (Y0 / 0, Y1 _ 0),

the characteristic velocity components of the nearly-grazing

trajectory are always larger than those of the grazing trajectory.

However, the relative differences are small, of order less

than 1% for the examples of Tables 1-2.

8.2. Terminal Velocities. Equations (8b) and (9b) can be

solved to obtain the terminal velocities of the nearly-grazing

trajectory in terms of the terminal path inclinations as follows:

~ 2 2 2~

V 0 = V,_2r00(r00 - ra)/(r00 - r a cos y0)],

~ 2 2 2-

V 1 = V,/]2rll(rll - ra)/(rll - r a cos yl)].

By comparison, we observe that, for the grazing trajectory

= il = 0),

V0G = V*_2r00/(r00 + ra)]'

VIG = V,_[2rll/(rll + ra)].

Let the right-hand sides of (42) be expanded in a Taylor series,

and let the approximations (38) be employed. Then, the following

relations can be established between (42) and (43):

~ ~ 2

V 0 = V0G - B0Y 0 ,

V1 = VIG - BIYI 2'

(42a)

(42b)

(43a)

(43b)

(44a)

(44b)
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which approximately imply that

2
V0 = V0G - B0Y 0 , (45a)

2

V 1 = VIG - BiY 1 , (45b)

with

2 2 2

B 0 =(V,//2) [ra/(r00- r a )] /]r00/(r00 + ra)] , (46a)

2 2 2

B 1 =(V,//2)[ra/(rll- r a )]/_rll/(rll + ra) ].

For the GEO-to-LEO transfer of Section 4, the constants B 0, B 1

take the values:

(46b)

B 0 = 0.1254 km/sec, (47a)

B 1 = 60.09 km/sec.
(47b)

Equations (44)-(45) show that the terminal velocities of a nearly-

grazing trajectory can be made close to the terminal velocities

of a grazing trajectory by making the entry and exit path

inclinations as small as possible. For tangential entry and exit

(Y0 = Yl = 0), the terminal velocities of the nearly-grazing

trajectory reduce to those of a grazing trajectory. For nontangential

entry and exit (¥0 _ 0, Yl _ 0), the terminal velocities of the

nearly-grazing trajectory are always smaller than those of the

grazing trajectory. However, the relative differences are small,

of order 10 -4 (entry velocities) or order 10 -3 (exit velocities)

for the examples of Tables 1-2.
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8.3. Perigee Altitude. Let us consider the trajectory

described by the spacecraft in the absence of aerodynamic forces

and evaluate the energy constant twice, once in terms of the entry

conditions and once in terms of the exit conditions. For the

nearly-grazing trajectory, this yields the relations

E 0 = V02/2 - _/ra = -_/(r00 + rp0) , (48a)

E 1 = V12/2 - _/r a = -_/(rll + rpl) , !48b)

in which rp0 , rpl are the perigee radii associated with the

entry and exit conditions, respectively. The corresponding relations

for the grazing trajectory are

E0G = V_G/2 - _/r a = -_/(r00 + ra) , (49a)

EIG = V2G/2 - _/r a = -_/(rll + ra). (49b)

Upon taking differences, we see that

(Q20 ~2 /2 -_(r - )/( + ) + r a), (50a)- VOG) = a rp0 r00 rp0 (r00

~2 ~2

(V 1 - VIG)/2 = -_(r a - rpl)/(rll + rpl)(rll + ra). (50b)

Next, we observe that

r a - rp0 = h a - hp0 , (51a)

r a - rpl = h a - hpl , (51b)

and employ the approximations

2

(r00 + rp0 ) (r00 + ra) & (r00 + ra) , (52a)

~

(rll + rpl)(rll + ra) = (rll + ra)2 (52b)
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With this understanding, Eqs. (50) can be rewritten as

w

- VOG)/2 = -_(h a - hp0)/(r00 + r a) ,
(53a)

-2 ~2 /2 -_ (h a ) / (r(VI - VIG) = - hpl ii + r a)

2
(53b)

Because _ = r V
a *

2
, Eqs. (53) imply that

h
a - hp0 (V20 ~2 (r00 + ra)2/2r V 2=- - VOG) a • '

(54a)

- hp :-(v[ - -2ha 1 VIG) (rll + ra)2/2raV, 2" (54b)

Note that, in the light of (44),

~2 -2 &_2B0_0GY02V 0 - V0G
(55a)

-2 ~2 ~ 2

V 1 - VlG =-2BIVIGY 1 •
(55b)

Hence, the altitude drops of the ideal perigees can be written as

2

h a - hp0 = C0¥ 0 ,

h a - hpl = ClYI 2

(56a)

(56b)

where

C 0 = rar00/(r00 - r a) ,
(57a)

C I = rarll/(rll - ra).
(57b)

For the GEO-to-LEO transfer of Section 4, the constants C O , C 1

take the values

C 0 = 7682 km,
(58a)
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C 1 = 207565 km. (58b)

Equations (56) show that the altitude drop of the ideal perigee

of a nearly-grazing trajectory can be made small by making the

entry and exit path inclinations as small as possible. For

tangential entry and exit (¥0 = Y1 = 0), the altitude drop of the

ideal perigee of a nearly-grazing trajectory reduces to that of a

grazing trajectory, which is zero. For nontangential entry and

exit (Y0 _ 0, Y1 _ 0), the altitude drop of the ideal perigee

is nonzero. In particular, Eq. (56a) yields a good approximation

to the minimum altitude of a nearly-grazing trajectory (within 1 km).

8.4. Minimum Altitude. The perigee altitude determined with

either of Eqs. (56) constitutes an approximation to hmi n, the

minimum altitude of the nearly-grazing trajectory. The approximation

is more accurate if Eq. (56a) is used instead of Eq. (56b), due

to the fact that the descending branch of the nearly-grazing

trajectory is shorter in time than the ascending branch. Hence,

the effects due to the aerodynamic forces are smaller in the

descending branch than in the ascending branch.

Alternatively, one might regard the left-hand sides of Eqs. (56)

as approximations to m_x(h a - h), the maximum altitude drop of

the nearly-grazing trajectory. To contain max(ha-h), one must maket

the right-hand sides of Eqs. (56) as small as possible. Hence,

the entry and exit path inclinations should be as small as

possible. One surmises that the solution of Problem (p2), minimum

peak altitude drop, is nearly the same as the solution of

Problem (Pl), minimum energy.
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8.5. Dynamic Pressure. During the atmospheric pass of an

AOT trajectory, both the density and the velocity change, and

hence the dynamic pressure (12b) changes. The ratio of the

instantaneous dynamic pressure to the entry dynamic pressure

is given by

2

DP/(DP) 0 = (p/pa) (V/V 0) . (59)

While the velocity ratio V/V 0 is of O(I), the density ratio P/Pa

is of O(103 ) to 0(104), depending on the particular trajectory.

Therefore, to contain the dynamic pressure, one must act primarily

on the density, hence the altitude, hence the drop of altitude.

One surmises that the solution of Problem (P3), minimum peak

dynamic pressure, is nearly the same as the solution of

Problem (P2), minimum peak altitude drop; hence, it is nearly

the same as the solution of Problem (PI), minimum energy.

8.6. Heating Rate. During the atmospheric pass of an AOT

trajectory, both the density and the velocity change, and hence

the heating rate (13b) changes. The ratio of the instantaneous

heating rate to the entry heating rate is given by

3.07 (60)
HR/(HR)0=  TP/Pa)(V/V0) •

While the velocity ratio V/V 0 is of O(i), the density ratio P/Pa

is of O(103 ) to O(104), depending on the particular trajectory.

Therefore, to contain the heating rate, one must act primarily

on the density, hence the altitude, hence the drop of altitude.

One surmises that the solution of Problem (P4), minimum peak

s

heating rate, is nearly the same as the solution of .
i
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Problem (P2), minimum peak altitude drop; hence, it is

nearly the same as the solution of Problem (Pl),minimum energy.

8.7. Lift Coefficient. For a nearly-grazing trajectory,

both Y and y are small along a major portion of the trajectory;

in particular, they are small in the region past the minimum

altitude point. For y and y small, Eq. (Ic) can be rewritten as

L = (I/2)CLPSV 2 _ -m(V2/r - g) - m(2wV). (61)

m

Because the atmospheric pass is executed at supercircular velocities,

the centrifugal force due to the Earth's curvature m(V2/r) always

exceeds the weight mg; also, the Coriolis force m(2_V) is directed

upward. Because both terms on the right-hand side of (61) are

negative, the required lift is negative; hence, the required lift

coefficient is negative. To maximize the instantaneous flight

altitude, the density p should be as small as possible; hence,

the lift coefficient C L should be as negative as possible. To

sum up, the control C L = CLL allows the flight altitude to be

as high as possible, and this is why the solutions of Problems (PI)

through (P4) are nearly the same.

8.8. Summary. The real optimal trajectory determined in the

presence of the control constraint (4) is a nearly-grazing

trajectory and is flown with the lift coefficient at the lower

bound, C L = CLL. The control distribution C L = CLL not only

minimizes the characteristic velocity of Problem (PI), but

simultaneously nearly minimizes the peak altitude drop of Problem

(p2), the peak dynamic pressure of Problem (P3), and the peak

heating rate of Problem (P4).
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9. Conclusions

This paper is concerned with the optimization of

trajectories for coplanar, aeroassisted orbital transfer (AOT)

from a geosynchronous Earth orbit (GEO) to a low Earth orbit

(LEO). It is assumed that the initial and final orbits are

circular, that the gravitational field is central and is governed

by the inverse square law, and that two impulses are employed,

one at GEO exit and one at LEO entry. During the atmospheric

pass, the trajectory is controlled via the lift coefficient in

such a way that the total characteristic velocity is minimized.

First, an ideal optimal trajectory is determined

analytically for lift coefficient unbounded. This trajectory is

called grazing trajectory, because the atmospheric pass is made

by flying at constant altitude along the edge of the atmosphere

until the excess velocity is depleted. For the grazing

trajectory, the lift coefficient varies in such a way that the

lift, the centrifugal force due to the Earth's curvature, the

weight, and the Coriolis force due to the Earth's rotation are in

static balance. Also, the grazing trajectory minimizes the total

characteristic velocity and simultaneously nearly minimizes the

peak values of the altitude drop, the dynamic pressure, and the

heating rate.

Next, starting from the grazing trajectory results, a real

optimal trajectory is determined numerically for lift coefficient

bounded from both below and above. This trajectory is

characterized by atmospheric penetration with the smallest

possible entry angle, followed by flight at the lift coefficient
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lower bound. It is called nearly-grazing trajectory, in that its

control distribution is the closest feasible control to that of

the grazing trajectory. Consistently with the grazing trajectory

behavior, the nearly-grazing trajectory minimizes the total

characteristic velocity and simultaneously nearly minimizes the

peak values of the altitude drop, the dynamic pressure, and the

heating rate.

w

T 7

w

w
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Table IA. Comparison

Spacecraft

of characteristic

SI.

velocities (km/sec),

Trajectory Characteristic

velocity

CLL=-0.90 CLL=-0.70 CLL=-0.50

Grazing

optimal

Hohmann

A'_oo

AVo 0

_;;oo

1.4857

1.4899

1.4638

1.4857

1.4901

1.4638

1.4857

1.4903

1.4638

Grazing

Optimal

Hohmann

A_II

0.0615

0.0673

2.4173

0.0615

0.0675

2.4173

0.0615

0.0678

2.4173

Grazing

Optimal

Hohmann

A_

A_

A_

1.5472

1.5572

3.8810

1.5472

1.5576

3.8810

1.5472

1.5581

3.8810
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Table IB. Comparison

Spacecraft

of characteristic

$2.

velocities (km/sec),

Trajectory Characteristic

velocity

CLL=-0.47 CLL=-0.38 CLL=-0.27

Grazing

Optimal

Hohmann

ASO0

A_O0

A_O0

1.4857

1.4896

1.4638

1.4857

1.4897

1.4638

1.4857

1.4899

1.4638

Grazing

Optimal

Hohmann

AVII

AVll

AVI1

0.0615

0.0684

2.4173

0.0615

0.0702

2.4173

0.0615

0.0733

2.4173

Grazing

Optimal

Hohmann

1.5472

1.5580

3.8810

1.5472

1.5599

3.8810

1.5472

1.5632

3.8810
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Table 2A. Optimal trajectory results, Spacecraft SI.

Quantity CLL=-0.90 CLL=-0.70 CLL=-0.50 Units

h0 120.00 120.00 120.00 km

V0 9.8371 9.8371 9.8372 km/sec

V0 10.3097 10.3096 10.3096 km/sec

Y0 -4.297 -4.388 -4.508 deg

Y0 -4.100 -4.187 -4.301 deg

hI 120.00 120.00 120.00 km

V1 7.4146 7.4145 7.4141 km/sec

V1 7.8884 7.8883 7.8880 km/sec

Y1 0.592 0.601 0.616 deg

Y1 0.557 ,0.565 0.579 deg

min(h) 75.35 73.46 70.96 km

max(DP) 1675 2245 3264 N/m 2

2
max(HR) 177.1 206.3 251.2 W/cm

T 1872.2 2172.1 2547.6 sec

AV00 1.4899 1.4901 1.4903 km/sec

AVII 0.0673 0.0675 0.0678 km/sec

AV 1.5572 1.5576 1.5581 km/sec

w
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Table 2B. Optimal trajectory results, Spacecraft $2.

Quantity CLL=-0.47 CLL=-0.38 CLL=-0.27 Units

h 0

V 0

V 0

Y0

Y0

120.00 120.00 120.00 km

9.8371 9.8371 9.8371 km/sec

10.3097 10.3097 10.3097 km/sec

-4.167 -4.215 -4.293 deg

-3.976 -4.022 -4.096 deg

w

h 1

V 1

YI

Y1

120.00 120.00 120.00 km

7.4136 7.4119 7.4089 km/sec

7.8874 7.8857 7.8827 km/sec

0.644 0.721 0.841 deg

0.605 0.678 0.790 deg

min(h) 78.52 78.09 77.25 km

max(DP) 986 1034 1153 N/m 2

2
max(HR) 131.6 132.7 138.2 W/cm

T 1069.1 856.4 691.2 sec

AV00 1.4896 1.4897 1.4899 km/sec

AVII 0.0684 0.0702 0.0733 km/sec

AV 1.5580 1.5599 1.5632 km/sec
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